Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Acad Radiol ; 29(7): 994-1003, 2022 07.
Article in English | MEDLINE | ID: covidwho-1763522

ABSTRACT

RATIONALE AND OBJECTIVES: Hard data labels for automated algorithm training are binary and cannot incorporate uncertainty between labels. We proposed and evaluated a soft labeling methodology to quantify opacification and percent well-aerated lung (%WAL) on chest CT, that considers uncertainty in segmenting pulmonary opacifications and reduces labeling burden. MATERIALS AND METHODS: We retrospectively sourced 760 COVID-19 chest CT scans from five international centers between January and June 2020. We created pixel-wise labels for >27,000 axial slices that classify three pulmonary opacification patterns: pure ground-glass, crazy-paving, consolidation. We also quantified %WAL as the total area of lung without opacifications. Inter-user hard label variability was quantified using Shannon entropy (range=0-1.39, low-high entropy/variability). We incorporated a soft labeling and modeling cycle following an initial model with hard labels and compared performance using point-wise accuracy and intersection-over-union of opacity labels with ground-truth, and correlation with ground-truth %WAL. RESULTS: Hard labels annotated by 12 radiologists demonstrated large inter-user variability (3.37% of pixels achieved complete agreement). Our soft labeling approach increased point-wise accuracy from 60.0% to 84.3% (p=0.01) compared to hard labeling at predicting opacification type and area involvement. The soft label model accurately predicted %WAL (R=0.900) compared to the hard label model (R=0.856), but the improvement was not statistically significant (p=0.349). CONCLUSION: Our soft labeling approach increased accuracy for automated quantification and classification of pulmonary opacification on chest CT. Although we developed the model on COVID-19, our intent is broad application for pulmonary opacification contexts and to provide a foundation for future development using soft labeling methods.


Subject(s)
COVID-19 , Algorithms , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed/methods , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL